Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

نویسندگان

  • Liming Yang
  • Tingbo Jiang
  • Jake C. Fountain
  • Brian T. Scully
  • Robert D. Lee
  • Robert C. Kemerait
  • Sixue Chen
  • Baozhu Guo
چکیده

Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance

Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 5...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Genetic Distance Based on SSR Markers and Testcross Performance of Maize Inbred Lines

The identification of parental inbred lines to develop superior hybrids is a rather costly and time-consuming step in maize breeding. In some cases, pedigree information has been used to select diverse parental lines. In the case of Iranian maize inbred lines, this information is not fully available. In this study we investigated the genetic distance (GD) based on Simple sequence Repeats (SSR) ...

متن کامل

RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular respo...

متن کامل

Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines

Zea mays is an important crop that is sensitive to drought stress, but survival rates and growth status remain strong in some drought-tolerant lines under stress conditions. Under drought conditions, many biological processes, such as photosynthesis, carbohydrate metabolism and energy metabolism, are suppressed, while little is known about how the transcripts of genes respond to drought stress ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014